MOS管损坏之谜,看完后疑惑终于解开了!

2022-06-21 11:48
555

MOS开关原理(简要):

MOS是电压驱动型器件,只要栅极和源级间给一个适当电压,源级和漏级间通路就形成。这个电流通路的电阻被成为MOS内阻,就是导通电阻。这个内阻大小基本决定了MOS芯片能承受的最大导通电流(当然和其它因素有关,最有关的是热阻),内阻越小承受电流越大(因为发热小)。


MOS管在控制器电路中的工作状态:

开通过程(由截止到导通的过渡过程)、导通状态、关断过程(由导通到截止的过渡过程)、截止状态。


MOS管烧坏的原因主要损耗也对应这几个状态,开关损耗(开通过程和关断过程),导通损耗,截止损耗(漏电流引起的,这个忽略不计),还有雪崩能量损耗。只要把这些损耗控制在MOS承受规格之内,MOS即会正常工作,超出承受范围,即发生损坏。而开关损耗往往大于导通状态损耗,不同MOS这个差距可能很大。

MOS损坏主要原因:

过流:持续大电流或瞬间超大电流引起的结温过高而烧毁;

过压:源漏过压击穿、源栅极过压击穿;

静电:静电击穿,CMOS电路都怕静电。



第一种:雪崩破坏



如果在漏极-源极间外加超出器件额定VDSS的电涌电压,而且达到击穿电压V(BR)DSS (根据击穿电流其值不同),并超出一定的能量后就发生破坏的现象。

在介质负载的开关运行断开时产生的回扫电压,或者由漏磁电感产生的尖峰电压超出功率MOSFET的漏极额定耐压并进入击穿区而导致破坏的模式会引起雪崩破坏。

典型电路:
图片



第二种:器件发热损坏



由超出安全区域引起发热而导致的。发热的原因分为直流功率和瞬态功率两种。

直流功率原因:外加直流功率而导致的损耗引起的发热

  • 导通电阻RDS(on)损耗(高温时RDS(on)增大,导致一定电流下,功耗增加)
  • 由漏电流IDSS引起的损耗(和其他损耗相比极小)
  • 瞬态功率原因:外加单触发脉冲
  • 负载短路
  • 开关损耗(接通、断开) *(与温度和工作频率是相关的)
  • 内置二极管的trr损耗(上下桥臂短路损耗)(与温度和工作频率是相关的)

器件正常运行时不发生的负载短路等引起的过电流,造成瞬时局部发热而导致破坏。另外,由于热量不相配或开关频率太高使芯片不能正常散热时,持续的发热使温度超出沟道温度导致热击穿的破坏。

图片图片



第三种:内置二极管破坏



在DS端间构成的寄生二极管运行时,由于在Flyback时功率MOSFET的寄生双极晶体管运行,导致此二极管破坏的模式。

图片



第四种:由寄生振荡导致的破坏



此破坏方式在并联时尤其容易发生。在并联功率MOS FET时未插入栅极电阻而直接连接时发生的栅极寄生振荡。高速反复接通、断开漏极-源极电压时,在由栅极-漏极电容Cgd(Crss)和栅极引脚电感Lg形成的谐振电路上发生此寄生振荡。当谐振条件(ωL=1/ωC)成立时,在栅极-源极间外加远远大于驱动电压Vgs(in)的振动电压由于超出栅极-源极间额定电压导致栅极破坏,或者接通、断开漏极-源极间电压时的振动电压通过栅极-漏极电容Cgd和Vgs波形重叠导致正向反馈,因此可能会由于误动作引起振荡破坏。

图片



第五种:栅极电涌、静电破坏



主要有因在栅极和源极之间如果存在电压浪涌和静电而引起的破坏,即栅极过电压破坏和由上电状态中静电在GS两端(包括安装和和测定设备的带电)而导致的栅极破坏。

图片



总结



避免MOS因为器件发热而造成的损坏,需要做好足够的散热设计。若通过增加散热器和电路板的长度来供所有MOS管散热,这样就会增加机箱的体积,同时这种散热结构,风量发散,散热效果不好。

有些大功率逆变器MOS管会安装通风纸来散热,但安装很麻烦。所以MOS管对散热的要求很高,散热条件分为最低和最高,即在运行中的散热情况的上下浮动范围。一般在选购的时候通常采用最差的散热条件为标准,这样在使用的时候就可以留出最大的安全余量,即使在高温中也能确保系统的正常运行。


澳门新葡游戏网[亚洲]全站最新版V4.4.8全面负责集团集成电路事业部中国大陆的技术支持与销售服务工作,2017年和2020年被评定为国家高 新技术企业。自主品牌AT“艾吉芯””艾吉克“,现以中低功率MOS管、贴片铝电解电容等各领域整体解决方案的研发与销售服务为核心业务。集团在上海建立了半导体分立器件芯片研发中心,与台湾无疆科技有限公司建立了MCU芯片研发销售战略合作关系,在湖南长沙建立了电源模块研发团队、规划建立5G模块、毫米波雷达研发团队。

昵称:
内容:
验证码:
提交评论
评论一下